Heart Disease Prediction System Using Weight Optimized Neural Network
نویسندگان
چکیده
Development of medical domain application has been one of the most active research areas. Neural Networks are one of many data mining analytical tools that can be utilized to make predictions for medical data. Model selection for a neural network includes various factors such as selection of the optimal number of hidden nodes, selection of the relevant input variables and selection of optimal connection weights, automatically obtaining Knowledge from the patient’s clinical data. This paper presents the application of Multi Layer Feed Forward Neural Network that integrates Genetic Algorithm and Back Propagation network (BPN) for heart attack prediction. GA is used to initialize and optimize the connection weights of MLFFNN. The genetic optimized NN is trained and tested using 270 patient data. Keyword: Multi Layer Feed Forward Neural Network,, Genetic Algorithm, Back propagation, Heart Disease
منابع مشابه
Prediction of Cardiovascular Diseases Using an Optimized Artificial Neural Network
Introduction: It is of utmost importance to predict cardiovascular diseases correctly. Therefore, it is necessary to utilize those models with a minimum error rate and maximum reliability. This study aimed to combine an artificial neural network with the genetic algorithm to assess patients with myocardial infarction and congestive heart failure. Materials & Methods: This study utilized a m...
متن کاملUsing Combined Descriptive and Predictive Methods of Data Mining for Coronary Artery Disease Prediction: a Case Study Approach
Heart disease is one of the major causes of morbidity in the world. Currently, large proportions of healthcare data are not processed properly, thus, failing to be effectively used for decision making purposes. The risk of heart disease may be predicted via investigation of heart disease risk factors coupled with data mining knowledge. This paper presents a model developed using combined descri...
متن کاملDesigning and evaluation of a decision support system for prediction of coronary artery disease
Introduction: Since human health is the issue of Medical Research, correct prediction of results is of a high importance. This study applies probabilistic neural network (PNN) for predicting coronary artery disease (CAD), because the PNN is stronger than other methods. Methods: In this descriptive-analytic study, The PNN method was implemented on 150 patients admitted to the Mazandaran Heart...
متن کاملComparison of Three Decision-Making Models in Differentiating Five Types of Heart Disease: A Case Study in Ghaem Sub-Specialty Hospital
Introduction: cardiovascular diseases are becoming the main cause of mortality and morbidity in most countries. This research goal was to predict the types of heart diseases for more accurate diagnosis by data mining and neural network technics. Method: This research was an applied-survey study and after data preprocessing, three approaches of neural network, decision making tree and Bayes simp...
متن کاملImproving the Performance of Machine Learning Algorithms for Heart Disease Diagnosis by Optimizing Data and Features
Heart is one of the most important members of the body, and heart disease is the major cause of death in the world and Iran. This is why the early/on time diagnosis is one of the significant basics for preventing and reducing deaths of this disease. So far, many studies have been done on heart disease with the aim of prediction, diagnosis, and treatment. However, most of them have been mostly f...
متن کامل